Antibody data
- Antibody Data
- Antigen structure
- References [102]
- Comments [0]
- Validations [0]
Submit
Validation data
Reference
Comment
Report error
- Product number
- HPA038002 - Provider product page
- Provider
- Atlas Antibodies
- Proper citation
- Atlas Antibodies Cat#HPA038002, RRID:AB_10672401
- Product name
- Anti-METTL14
- Antibody type
- Polyclonal
- Description
- Polyclonal Antibody against Human METTL14, Gene description: methyltransferase like 14, Alternative Gene Names: KIAA1627, Validated applications: ICC, IHC, Uniprot ID: Q9HCE5, Storage: Store at +4°C for short term storage. Long time storage is recommended at -20°C.
- Reactivity
- Human
- Host
- Rabbit
- Conjugate
- Unconjugated
- Isotype
- IgG
- Vial size
- 100 µl
- Concentration
- 0.3 mg/ml
- Storage
- Store at +4°C for short term storage. Long time storage is recommended at -20°C.
- Handling
- The antibody solution should be gently mixed before use.
Submitted references Small-molecule inhibition of the METTL3/METTL14 complex suppresses neuroblastoma tumor growth and promotes differentiation
m6A mRNA methylation by METTL14 regulates early pancreatic cell differentiation
Redox regulation of m6A methyltransferase METTL3 in β-cells controls the innate immune response in type 1 diabetes
N6-methyladenosine regulates metabolic remodeling in kidney aging through transcriptional regulator GLIS1
METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation
N6-methyladenosine modification is not a general trait of viral RNA genomes
M6A reduction relieves FUS-associated ALS granules
METTL3-mediated chromatin contacts promote stress granule phase separation through metabolic reprogramming during senescence
FSH induces EMT in ovarian cancer via ALKBH5-regulated Snail m6A demethylation
Antibiotic‐Induced Gut Microbiota Dysbiosis Modulates Host Transcriptome and m6A Epitranscriptome via Bile Acid Metabolism
Dynamics of N6-methyladenosine modification during Alzheimer's disease development
Overexpression of METTL14 mediates steatohepatitis and insulin resistance in mice
METTL3/MYCN cooperation drives neural crest differentiation and provides therapeutic vulnerability in neuroblastoma.
Overexpression of VIRMA confers vulnerability to breast cancers via the m6A-dependent regulation of unfolded protein response
In situ visualization of m6A sites in cellular mRNAs
Targeting histone deacetylase suppresses tumor growth through eliciting METTL14‐modified m6A RNA methylation in ocular melanoma
Mettl14-mediated m6A modification ensures the cell-cycle progression of late-born retinal progenitor cells
METTL3-Mediated m6A Modification Controls Splicing Factor Abundance and Contributes to Aggressive CLL
METTL14 mediates m6a modification on osteogenic proliferation and differentiation of bone marrow mesenchymal stem cells by regulating the processing of pri-miR-873
Globally reduced N6-methyladenosine (m6A) in C9ORF72-ALS/FTD dysregulates RNA metabolism and contributes to neurodegeneration
RBFOX2 recognizes N6-methyladenosine to suppress transcription and block myeloid leukaemia differentiation
METTL14 modulates glycolysis to inhibit colorectal tumorigenesis in p53‐wild‐type cells
METTL3 protects METTL14 from STUB1‐mediated degradation to maintain m6A homeostasis
Specific Regulation of m6A by SRSF7 Promotes the Progression of Glioblastoma
Systematic assessment of transcriptomic and metabolic reprogramming by blue light exposure coupled with aging
QKI shuttles internal m7G-modified transcripts into stress granules and modulates mRNA metabolism
METTL14 suppresses cancer stem cell phenotype of colorectal cancer via regulating of β-catenin/NANOG
N6-methyladenosine of Spi2a attenuates inflammation and sepsis-associated myocardial dysfunction in mice
Comprehensive immunohistochemical analysis of N6-methyladenosine (m6A) writers, erasers, and readers in endometrial cancer.
Hepatitis B Virus X Protein Expression Is Tightly Regulated by N6-Methyladenosine Modification of Its mRNA
N 6 -Methyladenine Modification of Hepatitis Delta Virus Regulates Its Virion Assembly by Recruiting YTHDF1
METTL14-mediated epitranscriptome modification of MN1 mRNA promote tumorigenicity and all-trans-retinoic acid resistance in osteosarcoma
m 6 A mRNA modification maintains colonic epithelial cell homeostasis via NF-κB–mediated antiapoptotic pathway
METTL14 promotes prostate tumorigenesis by inhibiting THBS1 via an m6A-YTHDF2-dependent mechanism
Altered m6A RNA methylation contributes to hippocampal memory deficits in Huntington’s disease mice
m6A demethylase ALKBH5 is required for antibacterial innate defense by intrinsic motivation of neutrophil migration
FTO Suppresses STAT3 Activation and Modulates Proinflammatory Interferon-Stimulated Gene Expression
METTL14-mediated Lnc-LSG1 m6A modification inhibits clear cell renal cell carcinoma metastasis via regulating ESRP2 ubiquitination
METTL14 promotes migration and invasion of choroidal melanoma by targeting RUNX2 mRNA via m6A modification
m6A regulation of cortical and retinal neurogenesis is mediated by the redundant m6A readers YTHDFs
METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis
A single N6-methyladenosine site regulates lncRNA HOTAIR function in breast cancer cells
Epitranscriptome profiling of spleen mRNA m6A methylation reveals pathways of host responses to malaria parasite infection
N6-methyladenosine modification of the 5′ epsilon structure of the HBV pregenome RNA regulates its encapsidation by the viral core protein
m6A modifications regulate intestinal immunity and rotavirus infection
m6A Modification Involves in Enriched Environment-Induced Neurogenesis and Cognition Enhancement
The Maternal Microbiome Programs the m6A Epitranscriptome of the Mouse Fetal Brain and Intestine
Exercise training ameliorates myocardial phenotypes in heart failure with preserved ejection fraction by changing N6-methyladenosine modification in mice model
N6-methyladenosine RNA modification (m6A) is of prognostic value in HPV-dependent vulvar squamous cell carcinoma.
Dynamic m6A mRNA Methylation Reveals the Role of METTL3/14-m6A-MNK2-ERK Signaling Axis in Skeletal Muscle Differentiation and Regeneration
Characterization of Long Non-coding RNAs Modified by m6A RNA Methylation in Skeletal Myogenesis
Relaxed initiation pausing of ribosomes drives oncogenic translation
Regulation of telomere homeostasis and genomic stability in cancer by N 6 -adenosine methylation (m 6 A)
Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response
m 6 A deposition is regulated by PRMT1‐mediated arginine methylation of METTL14 in its disordered C‐terminal region
Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine
A methionine-Mettl3-N-methyladenosine axis promotes polycystic kidney disease
Conditional deficiency of m6A methyltransferase Mettl14 in substantia nigra alters dopaminergic neuron function
m6A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype
MYC promotes cancer progression by modulating m6A modifications to suppress target gene translation
N6-methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages
Mettl14-Mediated m6A Modification Facilitates Liver Regeneration by Maintaining Endoplasmic Reticulum Homeostasis
METTL14 aggravates podocyte injury and glomerulopathy progression through N6-methyladenosine-dependent downregulating of Sirt1
Arginine methylation of METTL14 promotes RNA N6-methyladenosine modification and endoderm differentiation of mouse embryonic stem cells
N6-methyladenosine (m 6 A) depletion regulates pluripotency exit by activating signaling pathways in embryonic stem cells
N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition
Reprogramming of m(6)A epitranscriptome is crucial for shaping of transcriptome and proteome in response to hypoxia.
Altered Expression of the m6A Methyltransferase METTL3 in Alzheimer’s Disease
METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA
The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway
N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling
m6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells
Impact of the gut microbiota on the m6A epitranscriptome of mouse cecum and liver
Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing
m6A mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination
m6A Reader YTHDC2 Promotes Radiotherapy Resistance of Nasopharyngeal Carcinoma via Activating IGF1R/AKT/S6 Signaling Axis
m6A Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2
METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes
Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation
m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2
m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes
Mettl14 Is Essential for Epitranscriptomic Regulation of Striatal Function and Learning
METTL3 regulates WTAP protein homeostasis
The m6A-methylase complex recruits TREX and regulates mRNA export
N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response
Dynamic m6A modification regulates local translation of mRNA in axons
Cross-talk among writers, readers, and erasers of m 6 A regulates cancer growth and progression
METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification
N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications
METTL3-mediated m6A modification is required for cerebellar development.
Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets
N 6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein
Viral and cellular N6-methyladenosine and N6,2′-O-dimethyladenosine epitranscriptomes in the KSHV life cycle
The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells
Thiol-linked alkylation of RNA to assess expression dynamics
Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain.
The m 6 A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells
N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression
Dynamic m6A mRNA methylation directs translational control of heat shock response
N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions
N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells
A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation
Pomaville M, Chennakesavalu M, Wang P, Jiang Z, Sun H, Ren P, Borchert R, Gupta V, Ye C, Ge R, Zhu Z, Brodnik M, Zhong Y, Moore K, Salwen H, George R, Krajewska M, Chlenski A, Applebaum M, He C, Cohn S
Cell Reports 2024;43(5):114165
Cell Reports 2024;43(5):114165
m6A mRNA methylation by METTL14 regulates early pancreatic cell differentiation
Kahraman S, De Jesus D, Wei J, Brown N, Zou Z, Hu J, Pirouz M, Gregory R, He C, Kulkarni R
The EMBO Journal 2024;43(22):5445-5468
The EMBO Journal 2024;43(22):5445-5468
Redox regulation of m6A methyltransferase METTL3 in β-cells controls the innate immune response in type 1 diabetes
De Jesus D, Zhang Z, Brown N, Li X, Xiao L, Hu J, Gaffrey M, Fogarty G, Kahraman S, Wei J, Basile G, Rana T, Mathews C, Powers A, Parent A, Atkinson M, Dhe-Paganon S, Eizirik D, Qian W, He C, Kulkarni R
Nature Cell Biology 2024;26(3):421-437
Nature Cell Biology 2024;26(3):421-437
N6-methyladenosine regulates metabolic remodeling in kidney aging through transcriptional regulator GLIS1
Xu L, Chen S, Fan Q, Zhu Y, Mei H, Wang J, Yu H, Chen Y, Liu F
BMC Biology 2024;22(1)
BMC Biology 2024;22(1)
METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation
Xue M, Dong L, Zhang H, Li Y, Qiu K, Zhao Z, Gao M, Han L, Chan A, Li W, Leung K, Wang K, Pokharel S, Qing Y, Liu W, Wang X, Ren L, Bi H, Yang L, Shen C, Chen Z, Melstrom L, Li H, Timchenko N, Deng X, Huang W, Rosen S, Tian J, Xu L, Diao J, Chen C, Chen J, Shen B, Chen H, Su R
Journal of Hematology & Oncology 2024;17(1)
Journal of Hematology & Oncology 2024;17(1)
N6-methyladenosine modification is not a general trait of viral RNA genomes
Baquero-Pérez B, Yonchev I, Delgado-Tejedor A, Medina R, Puig-Torrents M, Sudbery I, Begik O, Wilson S, Novoa E, Díez J
Nature Communications 2024;15(1)
Nature Communications 2024;15(1)
M6A reduction relieves FUS-associated ALS granules
Di Timoteo G, Giuliani A, Setti A, Biagi M, Lisi M, Santini T, Grandioso A, Mariani D, Castagnetti F, Perego E, Zappone S, Lattante S, Sabatelli M, Rotili D, Vicidomini G, Bozzoni I
Nature Communications 2024;15(1)
Nature Communications 2024;15(1)
METTL3-mediated chromatin contacts promote stress granule phase separation through metabolic reprogramming during senescence
Wang C, Tanizawa H, Hill C, Havas A, Zhang Q, Liao L, Hao X, Lei X, Wang L, Nie H, Qi Y, Tian B, Gardini A, Kossenkov A, Goldman A, Berger S, Noma K, Adams P, Zhang R
Nature Communications 2024;15(1)
Nature Communications 2024;15(1)
FSH induces EMT in ovarian cancer via ALKBH5-regulated Snail m6A demethylation
Xu X, Zhuang X, Yu H, Li P, Li X, Lin H, Teoh J, Chen Y, Yang Y, Cheng Y, Chen W, Fu X
Theranostics 2024;14(5):2151-2166
Theranostics 2024;14(5):2151-2166
Antibiotic‐Induced Gut Microbiota Dysbiosis Modulates Host Transcriptome and m6A Epitranscriptome via Bile Acid Metabolism
Yang M, Zheng X, Fan J, Cheng W, Yan T, Lai Y, Zhang N, Lu Y, Qi J, Huo Z, Xu Z, Huang J, Jiao Y, Liu B, Pang R, Zhong X, Huang S, Luo G, Lee G, Jobin C, Eren A, Chang E, Wei H, Pan T, Wang X
Advanced Science 2024;11(28)
Advanced Science 2024;11(28)
Dynamics of N6-methyladenosine modification during Alzheimer's disease development
Gao S, Wang Y, Li X, Liang Y, Jin Z, Yang B, Yuan T, Tian H, Peng B, Rao Y
Heliyon 2024;10(6):e26911
Heliyon 2024;10(6):e26911
Overexpression of METTL14 mediates steatohepatitis and insulin resistance in mice
Zhou J, Yang M, Zhai D, Jiang Q, Zhang Q
Heliyon 2024;10(15):e35467
Heliyon 2024;10(15):e35467
METTL3/MYCN cooperation drives neural crest differentiation and provides therapeutic vulnerability in neuroblastoma.
Thombare K, Vaid R, Pucci P, Ihrmark Lundberg K, Ayyalusamy R, Baig MH, Mendez A, Burgos-Panadero R, Höppner S, Bartenhagen C, Sjövall D, Rehan AA, Dattatraya Nale S, Djos A, Martinsson T, Jaako P, Dong JJ, Kogner P, Johnsen JI, Fischer M, Turner SD, Mondal T
The EMBO journal 2024 Dec;43(24):6310-6335
The EMBO journal 2024 Dec;43(24):6310-6335
Overexpression of VIRMA confers vulnerability to breast cancers via the m6A-dependent regulation of unfolded protein response
Lee Q, Song R, Phan D, Pinello N, Tieng J, Su A, Halstead J, Wong A, van Geldermalsen M, Lee B, Rong B, Cook K, Larance M, Liu R, Lan F, Tiffen J, Wong J
Cellular and Molecular Life Sciences 2023;80(6)
Cellular and Molecular Life Sciences 2023;80(6)
In situ visualization of m6A sites in cellular mRNAs
Sheehan C, Marayati B, Bhatia J, Meyer K
Nucleic Acids Research 2023;51(20):e101-e101
Nucleic Acids Research 2023;51(20):e101-e101
Targeting histone deacetylase suppresses tumor growth through eliciting METTL14‐modified m6A RNA methylation in ocular melanoma
Zhuang A, Gu X, Ge T, Wang S, Ge S, Chai P, Jia R, Fan X
Cancer Communications 2023;43(11):1185-1206
Cancer Communications 2023;43(11):1185-1206
Mettl14-mediated m6A modification ensures the cell-cycle progression of late-born retinal progenitor cells
Li L, Sun Y, Davis A, Shah S, Hamed L, Wu M, Lin C, Ding J, Wang S
Cell Reports 2023;42(6):112596
Cell Reports 2023;42(6):112596
METTL3-Mediated m6A Modification Controls Splicing Factor Abundance and Contributes to Aggressive CLL
Wu Y, Jin M, Fernandez M, Hart K, Liao A, Ge X, Fernandes S, McDonald T, Chen Z, Röth D, Ghoda L, Marcucci G, Kalkum M, Pillai R, Danilov A, Li J, Chen J, Brown J, Rosen S, Siddiqi T, Wang L
Blood Cancer Discovery 2023;4(3):228-245
Blood Cancer Discovery 2023;4(3):228-245
METTL14 mediates m6a modification on osteogenic proliferation and differentiation of bone marrow mesenchymal stem cells by regulating the processing of pri-miR-873
Dong X, Liao B, Zhao J, Li X, Yan K, Ren K, Zhang X, Bao X, Guo W
Molecular Medicine Reports 2023;28(3)
Molecular Medicine Reports 2023;28(3)
Globally reduced N6-methyladenosine (m6A) in C9ORF72-ALS/FTD dysregulates RNA metabolism and contributes to neurodegeneration
Li Y, Dou X, Liu J, Xiao Y, Zhang Z, Hayes L, Wu R, Fu X, Ye Y, Yang B, Ostrow L, He C, Sun S
Nature Neuroscience 2023;26(8):1328-1338
Nature Neuroscience 2023;26(8):1328-1338
RBFOX2 recognizes N6-methyladenosine to suppress transcription and block myeloid leukaemia differentiation
Dou X, Xiao Y, Shen C, Wang K, Wu T, Liu C, Li Y, Yu X, Liu J, Dai Q, Pajdzik K, Ye C, Ge R, Gao B, Yu J, Sun S, Chen M, Chen J, He C
Nature Cell Biology 2023;25(9):1359-1368
Nature Cell Biology 2023;25(9):1359-1368
METTL14 modulates glycolysis to inhibit colorectal tumorigenesis in p53‐wild‐type cells
Hou Y, Zhang X, Yao H, Hou L, Zhang Q, Tao E, Zhu X, Jiang S, Ren Y, Hong X, Lu S, Leng X, Xie Y, Gao Y, Liang Y, Zhong T, Long B, Fang J, Meng X
EMBO reports 2023;24(4)
EMBO reports 2023;24(4)
METTL3 protects METTL14 from STUB1‐mediated degradation to maintain m6A homeostasis
Zeng Z, Pan Q, Sun Y, Huang H, Chen X, Chen T, He B, Ye H, Zhu S, Pu K, Fang K, Huang W, Chen Y, Wang W
EMBO reports 2023;24(3)
EMBO reports 2023;24(3)
Specific Regulation of m6A by SRSF7 Promotes the Progression of Glioblastoma
Cun Y, An S, Zheng H, Lan J, Chen W, Luo W, Yao C, Li X, Huang X, Sun X, Wu Z, Hu Y, Li Z, Zhang S, Wu G, Yang M, Tang M, Yu R, Liao X, Gao G, Zhao W, Wang J, Li J
Genomics, Proteomics & Bioinformatics 2023;21(4):707-728
Genomics, Proteomics & Bioinformatics 2023;21(4):707-728
Systematic assessment of transcriptomic and metabolic reprogramming by blue light exposure coupled with aging
Huang J, Zhou F, Zhou H, Zheng X, Huo Z, Yang M, Xu Z, Liu R, Wang L, Wang X, Gutkind J
PNAS Nexus 2023;2(12)
PNAS Nexus 2023;2(12)
QKI shuttles internal m7G-modified transcripts into stress granules and modulates mRNA metabolism
Zhao Z, Qing Y, Dong L, Han L, Wu D, Li Y, Li W, Xue J, Zhou K, Sun M, Tan B, Chen Z, Shen C, Gao L, Small A, Wang K, Leung K, Zhang Z, Qin X, Deng X, Xia Q, Su R, Chen J
Cell 2023;186(15):3208-3226.e27
Cell 2023;186(15):3208-3226.e27
METTL14 suppresses cancer stem cell phenotype of colorectal cancer via regulating of β-catenin/NANOG
Sun C, Chen J, Xing Z, Tao G
Journal of Cancer 2023;14(8):1407-1416
Journal of Cancer 2023;14(8):1407-1416
N6-methyladenosine of Spi2a attenuates inflammation and sepsis-associated myocardial dysfunction in mice
Wang X, Ding Y, Li R, Zhang R, Ge X, Gao R, Wang M, Huang Y, Zhang F, Zhao B, Liao W, Du J
Nature Communications 2023;14(1)
Nature Communications 2023;14(1)
Comprehensive immunohistochemical analysis of N6-methyladenosine (m6A) writers, erasers, and readers in endometrial cancer.
Ralser DJ, Condic M, Klümper N, Ellinger J, Staerk C, Egger EK, Kristiansen G, Mustea A, Thiesler T
Journal of cancer research and clinical oncology 2023 Jun;149(6):2417-2424
Journal of cancer research and clinical oncology 2023 Jun;149(6):2417-2424
Hepatitis B Virus X Protein Expression Is Tightly Regulated by N6-Methyladenosine Modification of Its mRNA
Kim G, Siddiqui A, James Ou J
Journal of Virology 2022;96(4)
Journal of Virology 2022;96(4)
N 6 -Methyladenine Modification of Hepatitis Delta Virus Regulates Its Virion Assembly by Recruiting YTHDF1
Kim G, Moon J, Gudima S, Siddiqui A, Ou J
Journal of Virology 2022;96(19)
Journal of Virology 2022;96(19)
METTL14-mediated epitranscriptome modification of MN1 mRNA promote tumorigenicity and all-trans-retinoic acid resistance in osteosarcoma
Li H, Huang G, Tu J, Lv D, Jin Q, Chen J, Zou Y, Lee D, Shen J, Xie X
eBioMedicine 2022;82
eBioMedicine 2022;82
m 6 A mRNA modification maintains colonic epithelial cell homeostasis via NF-κB–mediated antiapoptotic pathway
Zhang T, Ding C, Chen H, Zhao J, Chen Z, Chen B, Mao K, Hao Y, Roulis M, Xu H, Kluger Y, Zou Q, Ye Y, Zhan M, Flavell R, Li H
Science Advances 2022;8(12)
Science Advances 2022;8(12)
METTL14 promotes prostate tumorigenesis by inhibiting THBS1 via an m6A-YTHDF2-dependent mechanism
Wang Y, Chen J, Gao W, Yang R
Cell Death Discovery 2022;8(1)
Cell Death Discovery 2022;8(1)
Altered m6A RNA methylation contributes to hippocampal memory deficits in Huntington’s disease mice
Pupak A, Singh A, Sancho-Balsells A, Alcalá-Vida R, Espina M, Giralt A, Martí E, Ørom U, Ginés S, Brito V
Cellular and Molecular Life Sciences 2022;79(8)
Cellular and Molecular Life Sciences 2022;79(8)
m6A demethylase ALKBH5 is required for antibacterial innate defense by intrinsic motivation of neutrophil migration
Liu Y, Song R, Zhao L, Lu Z, Li Y, Zhan X, Lu F, Yang J, Niu Y, Cao X
Signal Transduction and Targeted Therapy 2022;7(1)
Signal Transduction and Targeted Therapy 2022;7(1)
FTO Suppresses STAT3 Activation and Modulates Proinflammatory Interferon-Stimulated Gene Expression
McFadden M, Sacco M, Murphy K, Park M, Gokhale N, Somfleth K, Horner S
Journal of Molecular Biology 2022;434(6):167247
Journal of Molecular Biology 2022;434(6):167247
METTL14-mediated Lnc-LSG1 m6A modification inhibits clear cell renal cell carcinoma metastasis via regulating ESRP2 ubiquitination
Shen D, Ding L, Lu Z, Wang R, Yu C, Wang H, Zheng Q, Wang X, Xu W, Yu H, Xu L, Wang M, Yu S, Zhu S, Qian J, Xia L, Li G
Molecular Therapy - Nucleic Acids 2022;27
Molecular Therapy - Nucleic Acids 2022;27
METTL14 promotes migration and invasion of choroidal melanoma by targeting RUNX2 mRNA via m6A modification
Zhang X, Zhang X, Liu T, Zhang Z, Piao C, Ning H
Journal of Cellular and Molecular Medicine 2022;26(22):5602-5613
Journal of Cellular and Molecular Medicine 2022;26(22):5602-5613
m6A regulation of cortical and retinal neurogenesis is mediated by the redundant m6A readers YTHDFs
Niu F, Che P, Yang Z, Zhang J, Yang L, Zhuang M, Ou X, Ji S
iScience 2022;25(9):104908
iScience 2022;25(9):104908
METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis
Su R, Dong L, Li Y, Gao M, He P, Liu W, Wei J, Zhao Z, Gao L, Han L, Deng X, Li C, Prince E, Tan B, Qing Y, Qin X, Shen C, Xue M, Zhou K, Chen Z, Xue J, Li W, Qin H, Wu X, Sun M, Nam Y, Chen C, Huang W, Horne D, Rosen S, He C, Chen J
Nature Cell Biology 2022;24(2):205-216
Nature Cell Biology 2022;24(2):205-216
A single N6-methyladenosine site regulates lncRNA HOTAIR function in breast cancer cells
Coller J, Porman A, Roberts J, Duncan E, Chrupcala M, Levine A, Kennedy M, Williams M, Richer J, Johnson A
PLOS Biology 2022;20(11):e3001885
PLOS Biology 2022;20(11):e3001885
Epitranscriptome profiling of spleen mRNA m6A methylation reveals pathways of host responses to malaria parasite infection
Wang L, Wu J, Liu R, Chen W, Pang Z, Zhou F, Xia L, Huang J, Pan T, Su X, Wang X
Frontiers in Immunology 2022;13
Frontiers in Immunology 2022;13
N6-methyladenosine modification of the 5′ epsilon structure of the HBV pregenome RNA regulates its encapsidation by the viral core protein
Kim G, Moon J, Siddiqui A
Proceedings of the National Academy of Sciences 2022;119(7)
Proceedings of the National Academy of Sciences 2022;119(7)
m6A modifications regulate intestinal immunity and rotavirus infection
Wang A, Tao W, Tong J, Gao J, Wang J, Hou G, Qian C, Zhang G, Li R, Wang D, Ren X, Zhang K, Ding S, Flavell R, Li H, Pan W, Zhu S
eLife 2022;11
eLife 2022;11
m6A Modification Involves in Enriched Environment-Induced Neurogenesis and Cognition Enhancement
Qu W, Li Q, Wang M, Zhao X, Wu J, Liu D, Hong S, Yang Y, Shu Q, Li X
Frontiers in Cell and Developmental Biology 2022;10
Frontiers in Cell and Developmental Biology 2022;10
The Maternal Microbiome Programs the m6A Epitranscriptome of the Mouse Fetal Brain and Intestine
Xiao Z, Liu S, Li Z, Cui J, Wang H, Wang Z, Ren Q, Xia L, Wang Z, Li Y
Frontiers in Cell and Developmental Biology 2022;10
Frontiers in Cell and Developmental Biology 2022;10
Exercise training ameliorates myocardial phenotypes in heart failure with preserved ejection fraction by changing N6-methyladenosine modification in mice model
Liu K, Ju W, Ouyang S, Liu Z, He F, hao J, Guan H, Wu J
Frontiers in Cell and Developmental Biology 2022;10
Frontiers in Cell and Developmental Biology 2022;10
N6-methyladenosine RNA modification (m6A) is of prognostic value in HPV-dependent vulvar squamous cell carcinoma.
Condic M, Thiesler T, Staerk C, Klümper N, Ellinger J, Egger EK, Kübler K, Kristiansen G, Mustea A, Ralser DJ
BMC cancer 2022 Sep 1;22(1):943
BMC cancer 2022 Sep 1;22(1):943
Dynamic m6A mRNA Methylation Reveals the Role of METTL3/14-m6A-MNK2-ERK Signaling Axis in Skeletal Muscle Differentiation and Regeneration
Xie S, Lei H, Yang B, Diao L, Liao J, He J, Tao S, Hu Y, Hou Y, Sun Y, Peng Y, Zhang Q, Xiao Z
Frontiers in Cell and Developmental Biology 2021;9
Frontiers in Cell and Developmental Biology 2021;9
Characterization of Long Non-coding RNAs Modified by m6A RNA Methylation in Skeletal Myogenesis
Xie S, Tao S, Diao L, Li P, Chen W, Zhou Z, Hu Y, Hou Y, Lei H, Xu W, Chen W, Peng Y, Zhang Q, Xiao Z
Frontiers in Cell and Developmental Biology 2021;9
Frontiers in Cell and Developmental Biology 2021;9
Relaxed initiation pausing of ribosomes drives oncogenic translation
Dong L, Mao Y, Zhou A, Liu X, Zhou J, Wan J, Qian S
Science Advances 2021;7(8)
Science Advances 2021;7(8)
Regulation of telomere homeostasis and genomic stability in cancer by N 6 -adenosine methylation (m 6 A)
Lee J, Hong J, Zhang Z, de la Peña Avalos B, Proietti C, Deamicis A, Guzmán G. P, Lam H, Garcia J, Roudier M, Sisk A, De La Rosa R, Vu K, Yang M, Liao Y, Scheirer J, Pechacek D, Yadav P, Rao M, Zheng S, Johnson-Pais T, Leach R, Elizalde P, Dray E, Xu K
Science Advances 2021;7(31)
Science Advances 2021;7(31)
Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response
Yu F, Wei J, Cui X, Yu C, Ni W, Bungert J, Wu L, He C, Qian Z
Nucleic Acids Research 2021;49(10):5779-5797
Nucleic Acids Research 2021;49(10):5779-5797
m 6 A deposition is regulated by PRMT1‐mediated arginine methylation of METTL14 in its disordered C‐terminal region
Wang Z, Pan Z, Adhikari S, Harada B, Shen L, Yuan W, Abeywardana T, Al‐Hadid Q, Stark J, He C, Lin L, Yang Y
The EMBO Journal 2021;40(5)
The EMBO Journal 2021;40(5)
Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine
McFadden M, McIntyre A, Mourelatos H, Abell N, Gokhale N, Ipas H, Xhemalçe B, Mason C, Horner S
Cell Reports 2021;34(9):108798
Cell Reports 2021;34(9):108798
A methionine-Mettl3-N-methyladenosine axis promotes polycystic kidney disease
Ramalingam H, Kashyap S, Cobo-Stark P, Flaten A, Chang C, Hajarnis S, Hein K, Lika J, Warner G, Espindola-Netto J, Kumar A, Kanchwala M, Xing C, Chini E, Patel V
Cell Metabolism 2021;33(6):1234-1247.e7
Cell Metabolism 2021;33(6):1234-1247.e7
Conditional deficiency of m6A methyltransferase Mettl14 in substantia nigra alters dopaminergic neuron function
Teng Y, Liu Z, Chen X, Liu Y, Geng F, Le W, Jiang H, Yang L
Journal of Cellular and Molecular Medicine 2021;25(17):8567-8572
Journal of Cellular and Molecular Medicine 2021;25(17):8567-8572
m6A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype
Liu P, Li F, Lin J, Fukumoto T, Nacarelli T, Hao X, Kossenkov A, Simon M, Zhang R
Nature Cell Biology 2021;23(4):355-365
Nature Cell Biology 2021;23(4):355-365
MYC promotes cancer progression by modulating m6A modifications to suppress target gene translation
Wu G, Suo C, Yang Y, Shen S, Sun L, Li S, Zhou Y, Yang D, Wang Y, Cai Y, Wang N, Zhang H, Yang Y, Cao J, Gao P
EMBO reports 2021;22(3)
EMBO reports 2021;22(3)
N6-methyladenosine modification of HIV-1 RNA suppresses type-I interferon induction in differentiated monocytic cells and primary macrophages
Evans D, Chen S, Kumar S, Espada C, Tirumuru N, Cahill M, Hu L, He C, Wu L
PLOS Pathogens 2021;17(3):e1009421
PLOS Pathogens 2021;17(3):e1009421
Mettl14-Mediated m6A Modification Facilitates Liver Regeneration by Maintaining Endoplasmic Reticulum Homeostasis
Cao X, Shu Y, Chen Y, Xu Q, Guo G, Wu Z, Shao M, Zhou Y, Chen M, Gong Y, Li C, Shi Y, Bu H
Cellular and Molecular Gastroenterology and Hepatology 2021;12(2):633-651
Cellular and Molecular Gastroenterology and Hepatology 2021;12(2):633-651
METTL14 aggravates podocyte injury and glomerulopathy progression through N6-methyladenosine-dependent downregulating of Sirt1
Lu Z, Liu H, Song N, Liang Y, Zhu J, Chen J, Ning Y, Hu J, Fang Y, Teng J, Zou J, Dai Y, Ding X
Cell Death & Disease 2021;12(10)
Cell Death & Disease 2021;12(10)
Arginine methylation of METTL14 promotes RNA N6-methyladenosine modification and endoderm differentiation of mouse embryonic stem cells
Liu X, Wang H, Zhao X, Luo Q, Wang Q, Tan K, Wang Z, Jiang J, Cui J, Du E, Xia L, Du W, Chen D, Xia L, Xiao S
Nature Communications 2021;12(1)
Nature Communications 2021;12(1)
N6-methyladenosine (m 6 A) depletion regulates pluripotency exit by activating signaling pathways in embryonic stem cells
Jin K, Zuo R, Anastassiadis K, Klungland A, Marr C, Filipczyk A
Proceedings of the National Academy of Sciences 2021;118(51)
Proceedings of the National Academy of Sciences 2021;118(51)
N6-methyladenosine modification of HCV RNA genome regulates cap-independent IRES-mediated translation via YTHDC2 recognition
Kim G, Siddiqui A
Proceedings of the National Academy of Sciences 2021;118(10)
Proceedings of the National Academy of Sciences 2021;118(10)
Reprogramming of m(6)A epitranscriptome is crucial for shaping of transcriptome and proteome in response to hypoxia.
Wang YJ, Yang B, Lai Q, Shi JF, Peng JY, Zhang Y, Hu KS, Li YQ, Peng JW, Yang ZZ, Li YT, Pan Y, Koeffler HP, Liao JY, Yin D
RNA biology 2021 Jan;18(1):131-143
RNA biology 2021 Jan;18(1):131-143
Altered Expression of the m6A Methyltransferase METTL3 in Alzheimer’s Disease
Huang H, Camats-Perna J, Medeiros R, Anggono V, Widagdo J
eneuro 2020;7(5):ENEURO.0125-20.2020
eneuro 2020;7(5):ENEURO.0125-20.2020
METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA
Wu Z, Shi Y, Lu M, Song M, Yu Z, Wang J, Wang S, Ren J, Yang Y, Liu G, Zhang W, Ci W, Qu J
Nucleic Acids Research 2020;48(19):11083-11096
Nucleic Acids Research 2020;48(19):11083-11096
The m6A methyltransferase METTL14 inhibits the proliferation, migration, and invasion of gastric cancer by regulating the PI3K/AKT/mTOR signaling pathway
Liu X, Xiao M, Zhang L, Li L, Zhu G, Shen E, Lv M, Lu X, Sun Z
Journal of Clinical Laboratory Analysis 2020;35(3)
Journal of Clinical Laboratory Analysis 2020;35(3)
N6-Methyladenosine modification of hepatitis B and C viral RNAs attenuates host innate immunity via RIG-I signaling
Kim G, Imam H, Khan M, Siddiqui A
Journal of Biological Chemistry 2020;295(37):13123-13133
Journal of Biological Chemistry 2020;295(37):13123-13133
m6A mRNA methylation regulates testosterone synthesis through modulating autophagy in Leydig cells
Chen Y, Wang J, Xu D, Xiang Z, Ding J, Yang X, Li D, Han X
Autophagy 2020;17(2):457-475
Autophagy 2020;17(2):457-475
Impact of the gut microbiota on the m6A epitranscriptome of mouse cecum and liver
Jabs S, Biton A, Bécavin C, Nahori M, Ghozlane A, Pagliuso A, Spanò G, Guérineau V, Touboul D, Giai Gianetto Q, Chaze T, Matondo M, Dillies M, Cossart P
Nature Communications 2020;11(1)
Nature Communications 2020;11(1)
Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing
Price A, Hayer K, McIntyre A, Gokhale N, Abebe J, Della Fera A, Mason C, Horner S, Wilson A, Depledge D, Weitzman M
Nature Communications 2020;11(1)
Nature Communications 2020;11(1)
m6A mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination
Xu H, Dzhashiashvili Y, Shah A, Kunjamma R, Weng Y, Elbaz B, Fei Q, Jones J, Li Y, Zhuang X, Ming G, He C, Popko B
Neuron 2020;105(2):293-309.e5
Neuron 2020;105(2):293-309.e5
m6A Reader YTHDC2 Promotes Radiotherapy Resistance of Nasopharyngeal Carcinoma via Activating IGF1R/AKT/S6 Signaling Axis
He J, Li Z, Rong Z, Gao J, Mu Y, Guan Y, Ren X, Zi Y, Liu L, Fan Q, Zhou M, Duan Y, Zhou Q, Deng Y, Sun L
Frontiers in Oncology 2020;10
Frontiers in Oncology 2020;10
m6A Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2
Chen J, Zhang Y, Huang C, Shen H, Sun B, Cheng X, Zhang Y, Yang Y, Shu Q, Yang Y, Li X
Genomics, Proteomics & Bioinformatics 2019;17(2):154-168
Genomics, Proteomics & Bioinformatics 2019;17(2):154-168
METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes
Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, Jin J, Ding X, Wu S, Huang H, Yu T, Zhang M, Hong H, Yao S, Zhao Y, Zhang Z
Autophagy 2019;15(8):1419-1437
Autophagy 2019;15(8):1419-1437
Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation
Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, Zhou Q, Cao X
Nature Communications 2019;10(1)
Nature Communications 2019;10(1)
m6A in mRNA coding regions promotes translation via the RNA helicase-containing YTHDC2
Mao Y, Dong L, Liu X, Guo J, Ma H, Shen B, Qian S
Nature Communications 2019;10(1)
Nature Communications 2019;10(1)
m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes
De Jesus D, Zhang Z, Kahraman S, Brown N, Chen M, Hu J, Gupta M, He C, Kulkarni R
Nature Metabolism 2019;1(8):765-774
Nature Metabolism 2019;1(8):765-774
Mettl14 Is Essential for Epitranscriptomic Regulation of Striatal Function and Learning
Koranda J, Dore L, Shi H, Patel M, Vaasjo L, Rao M, Chen K, Lu Z, Yi Y, Chi W, He C, Zhuang X
Neuron 2018;99(2):283-292.e5
Neuron 2018;99(2):283-292.e5
METTL3 regulates WTAP protein homeostasis
Sorci M, Ianniello Z, Cruciani S, Larivera S, Ginistrelli L, Capuano E, Marchioni M, Fazi F, Fatica A
Cell Death & Disease 2018;9(8)
Cell Death & Disease 2018;9(8)
The m6A-methylase complex recruits TREX and regulates mRNA export
Lesbirel S, Viphakone N, Parker M, Parker J, Heath C, Sudbery I, Wilson S
Scientific Reports 2018;8(1)
Scientific Reports 2018;8(1)
N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response
Zhou J, Wan J, Shu X, Mao Y, Liu X, Yuan X, Zhang X, Hess M, Brüning J, Qian S
Molecular Cell 2018;69(4):636-647.e7
Molecular Cell 2018;69(4):636-647.e7
Dynamic m6A modification regulates local translation of mRNA in axons
Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, Park J, Ji S
Nucleic Acids Research 2018;46(3):1412-1423
Nucleic Acids Research 2018;46(3):1412-1423
Cross-talk among writers, readers, and erasers of m 6 A regulates cancer growth and progression
Panneerdoss S, Eedunuri V, Yadav P, Timilsina S, Rajamanickam S, Viswanadhapalli S, Abdelfattah N, Onyeagucha B, Cui X, Lai Z, Mohammad T, Gupta Y, Huang T, Huang Y, Chen Y, Rao M
Science Advances 2018;4(10)
Science Advances 2018;4(10)
METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification
Weng H, Huang H, Wu H, Qin X, Zhao B, Dong L, Shi H, Skibbe J, Shen C, Hu C, Sheng Y, Wang Y, Wunderlich M, Zhang B, Dore L, Su R, Deng X, Ferchen K, Li C, Sun M, Lu Z, Jiang X, Marcucci G, Mulloy J, Yang J, Qian Z, Wei M, He C, Chen J
Cell Stem Cell 2018;22(2):191-205.e9
Cell Stem Cell 2018;22(2):191-205.e9
N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications
Wang Y, Li Y, Yue M, Wang J, Kumar S, Wechsler-Reya R, Zhang Z, Ogawa Y, Kellis M, Duester G, Zhao J
Nature Neuroscience 2018;21(2):195-206
Nature Neuroscience 2018;21(2):195-206
METTL3-mediated m6A modification is required for cerebellar development.
Wang CX, Cui GS, Liu X, Xu K, Wang M, Zhang XX, Jiang LY, Li A, Yang Y, Lai WY, Sun BF, Jiang GB, Wang HL, Tong WM, Li W, Wang XJ, Yang YG, Zhou Q
PLoS biology 2018 Jun;16(6):e2004880
PLoS biology 2018 Jun;16(6):e2004880
Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets
Zhang F, Kang Y, Wang M, Li Y, Xu T, Yang W, Song H, Wu H, Shu Q, Jin P
Human Molecular Genetics 2018
Human Molecular Genetics 2018
N 6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein
Liu N, Zhou K, Parisien M, Dai Q, Diatchenko L, Pan T
Nucleic Acids Research 2017;45(10):6051-6063
Nucleic Acids Research 2017;45(10):6051-6063
Viral and cellular N6-methyladenosine and N6,2′-O-dimethyladenosine epitranscriptomes in the KSHV life cycle
Tan B, Liu H, Zhang S, da Silva S, Zhang L, Meng J, Cui X, Yuan H, Sorel O, Zhang S, Huang Y, Gao S
Nature Microbiology 2017;3(1):108-120
Nature Microbiology 2017;3(1):108-120
The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells
Vu L, Pickering B, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, Schulman J, Famulare C, Patel M, Klimek V, Garrett-Bakelman F, Melnick A, Carroll M, Mason C, Jaffrey S, Kharas M
Nature Medicine 2017;23(11):1369-1376
Nature Medicine 2017;23(11):1369-1376
Thiol-linked alkylation of RNA to assess expression dynamics
Herzog V, Reichholf B, Neumann T, Rescheneder P, Bhat P, Burkard T, Wlotzka W, von Haeseler A, Zuber J, Ameres S
Nature Methods 2017;14(12):1198-1204
Nature Methods 2017;14(12):1198-1204
Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain.
Chang M, Lv H, Zhang W, Ma C, He X, Zhao S, Zhang ZW, Zeng YX, Song S, Niu Y, Tong WM
Open biology 2017 Sep;7(9)
Open biology 2017 Sep;7(9)
The m 6 A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells
Lin S, Choe J, Du P, Triboulet R, Gregory R
Molecular Cell 2016;62(3):335-345
Molecular Cell 2016;62(3):335-345
N6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression
Tirumuru N, Zhao B, Lu W, Lu Z, He C, Wu L
eLife 2016;5
eLife 2016;5
Dynamic m6A mRNA methylation directs translational control of heat shock response
Zhou J, Wan J, Gao X, Zhang X, Jaffrey S, Qian S
Nature 2015;526(7574):591-594
Nature 2015;526(7574):591-594
N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions
Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T
Nature 2015;518(7540):560-564
Nature 2015;518(7540):560-564
N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells
Wang Y, Li Y, Toth J, Petroski M, Zhang Z, Zhao J
Nature Cell Biology 2014;16(2):191-198
Nature Cell Biology 2014;16(2):191-198
A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C
Nature Chemical Biology 2013;10(2):93-95
Nature Chemical Biology 2013;10(2):93-95
No comments: Submit comment
No validations: Submit validation data