Antibody data
- Antibody Data
- Antigen structure
- References [18]
- Comments [0]
- Validations
- Immunohistochemistry [1]
Submit
Validation data
Reference
Comment
Report error
- Product number
- HPA035787 - Provider product page
- Provider
- Atlas Antibodies
- Proper citation
- Atlas Antibodies Cat#HPA035787, RRID:AB_2674782
- Product name
- Anti-TMPRSS2
- Antibody type
- Polyclonal
- Description
- Polyclonal Antibody against Human TMPRSS2, Gene description: transmembrane protease, serine 2, Alternative Gene Names: PRSS10, Validated applications: WB, IHC, Uniprot ID: O15393, Storage: Store at +4°C for short term storage. Long time storage is recommended at -20°C.
- Reactivity
- Human
- Host
- Rabbit
- Conjugate
- Unconjugated
- Isotype
- IgG
- Vial size
- 100 µl
- Concentration
- 0.2 mg/ml
- Storage
- Store at +4°C for short term storage. Long time storage is recommended at -20°C.
- Handling
- The antibody solution should be gently mixed before use.
Submitted references ACE2 and TMPRSS2 in human kidney tissue and urine extracellular vesicles with age, sex, and COVID-19
TMPRSS2 is a functional receptor for human coronavirus HKU1
A high-throughput screening system for SARS-CoV-2 entry inhibition, syncytia formation and cell toxicity
Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies
The Spike-Stabilizing D614G Mutation Interacts with S1/S2 Cleavage Site Mutations To Promote the Infectious Potential of SARS-CoV-2 Variants
Angiotensin‐converting enzyme 2 and transmembrane protease serine 2 in female and male patients with end‐stage kidney disease
SARS-COV-2 spike binding to ACE2 in living cells monitored by TR-FRET
Impact of TMPRSS2 Expression, Mutation Prognostics, and Small Molecule (CD, AD, TQ, and TQFL12) Inhibition on Pan-Cancer Tumors and Susceptibility to SARS-CoV-2
Expanded ACE2 dependencies of diverse SARS-like coronavirus receptor binding domains
Systematic Investigation of SARS-CoV-2 Receptor Protein Distribution along Viral Entry Routes in Humans
SARS‐CoV‐2 Alpha, Beta, and Delta variants display enhanced Spike‐mediated syncytia formation
Clinical and in Vitro Evidence against Placenta Infection at Term by Severe Acute Respiratory Syndrome Coronavirus 2
Tropism of Severe Acute Respiratory Syndrome Coronavirus 2 for Barrett’s Esophagus May Increase Susceptibility to Developing Coronavirus Disease 2019
Viral S protein histochemistry reveals few potential SARS-CoV-2 entry sites in human ocular tissues
Elevation in viral entry genes and innate immunity compromise underlying increased infectivity and severity of COVID-19 in cancer patients
Gene expression andin situprotein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue
Syncytia formation by SARS‐CoV‐2‐infected cells
SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in β Cells
Bach M, Laftih S, Andresen J, Pedersen R, Andersen T, Madsen L, Madsen K, Hinrichs G, Zachar R, Svenningsen P, Lund L, Johansen I, Hansen L, Palarasah Y, Jensen B
Pflügers Archiv - European Journal of Physiology 2024;477(1):83-98
Pflügers Archiv - European Journal of Physiology 2024;477(1):83-98
TMPRSS2 is a functional receptor for human coronavirus HKU1
Saunders N, Fernandez I, Planchais C, Michel V, Rajah M, Baquero Salazar E, Postal J, Porrot F, Guivel-Benhassine F, Blanc C, Chauveau-Le Friec G, Martin A, Grzelak L, Oktavia R, Meola A, Ahouzi O, Hoover-Watson H, Prot M, Delaune D, Cornelissen M, Deijs M, Meriaux V, Mouquet H, Simon-Lorière E, van der Hoek L, Lafaye P, Rey F, Buchrieser J, Schwartz O
Nature 2023;624(7990):207-214
Nature 2023;624(7990):207-214
A high-throughput screening system for SARS-CoV-2 entry inhibition, syncytia formation and cell toxicity
Jancy S, Lupitha S, Chandrasekharan A, Varadarajan S, Nelson-Sathi S, Prasad R, Jones S, Easwaran S, Darvin P, Sivasailam A, Santhoshkumar T
Biological Procedures Online 2023;25(1)
Biological Procedures Online 2023;25(1)
Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies
Planas D, Bruel T, Staropoli I, Guivel-Benhassine F, Porrot F, Maes P, Grzelak L, Prot M, Mougari S, Planchais C, Puech J, Saliba M, Sahraoui R, Fémy F, Morel N, Dufloo J, Sanjuán R, Mouquet H, André E, Hocqueloux L, Simon-Loriere E, Veyer D, Prazuck T, Péré H, Schwartz O
Nature Communications 2023;14(1)
Nature Communications 2023;14(1)
The Spike-Stabilizing D614G Mutation Interacts with S1/S2 Cleavage Site Mutations To Promote the Infectious Potential of SARS-CoV-2 Variants
Gellenoncourt S, Saunders N, Robinot R, Auguste L, Rajah M, Kervevan J, Jeger-Madiot R, Staropoli I, Planchais C, Mouquet H, Buchrieser J, Schwartz O, Chakrabarti L, Gallagher T
Journal of Virology 2022;96(19)
Journal of Virology 2022;96(19)
Angiotensin‐converting enzyme 2 and transmembrane protease serine 2 in female and male patients with end‐stage kidney disease
Arefin S, Hernandez L, Ward L, Schwarz A, Barany P, Stenvinkel P, Kublickiene K
European Journal of Clinical Investigation 2022;52(8)
European Journal of Clinical Investigation 2022;52(8)
SARS-COV-2 spike binding to ACE2 in living cells monitored by TR-FRET
Cecon E, Burridge M, Cao L, Carter L, Ravichandran R, Dam J, Jockers R
Cell Chemical Biology 2022;29(1):74-83.e4
Cell Chemical Biology 2022;29(1):74-83.e4
Impact of TMPRSS2 Expression, Mutation Prognostics, and Small Molecule (CD, AD, TQ, and TQFL12) Inhibition on Pan-Cancer Tumors and Susceptibility to SARS-CoV-2
Fu J, Liu S, Tan Q, Liu Z, Qian J, Li T, Du J, Song B, Li D, Zhang L, He J, Guo K, Zhou B, Chen H, Fu S, Liu X, Cheng J, He T, Fu J
Molecules 2022;27(21):7413
Molecules 2022;27(21):7413
Expanded ACE2 dependencies of diverse SARS-like coronavirus receptor binding domains
Xie X, Roelle S, Shukla N, Pham A, Bruchez A, Matreyek K
PLOS Biology 2022;20(7):e3001738
PLOS Biology 2022;20(7):e3001738
Systematic Investigation of SARS-CoV-2 Receptor Protein Distribution along Viral Entry Routes in Humans
Bräutigam K, Reinhard S, Galván J, Wartenberg M, Hewer E, Schürch C
Respiration 2022;101(6):610-618
Respiration 2022;101(6):610-618
SARS‐CoV‐2 Alpha, Beta, and Delta variants display enhanced Spike‐mediated syncytia formation
Rajah M, Hubert M, Bishop E, Saunders N, Robinot R, Grzelak L, Planas D, Dufloo J, Gellenoncourt S, Bongers A, Zivaljic M, Planchais C, Guivel‐Benhassine F, Porrot F, Mouquet H, Chakrabarti L, Buchrieser J, Schwartz O
The EMBO Journal 2021;40(24)
The EMBO Journal 2021;40(24)
Clinical and in Vitro Evidence against Placenta Infection at Term by Severe Acute Respiratory Syndrome Coronavirus 2
Colson A, Depoix C, Dessilly G, Baldin P, Danhaive O, Hubinont C, Sonveaux P, Debiève F
The American Journal of Pathology 2021;191(9):1610-1623
The American Journal of Pathology 2021;191(9):1610-1623
Tropism of Severe Acute Respiratory Syndrome Coronavirus 2 for Barrett’s Esophagus May Increase Susceptibility to Developing Coronavirus Disease 2019
Jin R, Brown J, Li Q, Bayguinov P, Wang J, Mills J
Gastroenterology 2021;160(6):2165-2168.e4
Gastroenterology 2021;160(6):2165-2168.e4
Viral S protein histochemistry reveals few potential SARS-CoV-2 entry sites in human ocular tissues
Martin G, Wolf J, Lapp T, Agostini H, Schlunck G, Auw-Hädrich C, Lange C
Scientific Reports 2021;11(1)
Scientific Reports 2021;11(1)
Elevation in viral entry genes and innate immunity compromise underlying increased infectivity and severity of COVID-19 in cancer patients
Kwan J, Lin L, Bell R, Bruce J, Richardson C, Pugh T, Liu F
Scientific Reports 2021;11(1)
Scientific Reports 2021;11(1)
Gene expression andin situprotein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue
Aguiar J, Tremblay B, Mansfield M, Woody O, Lobb B, Banerjee A, Chandiramohan A, Tiessen N, Cao Q, Dvorkin-Gheva A, Revill S, Miller M, Carlsten C, Organ L, Joseph C, John A, Hanson P, Austin R, McManus B, Jenkins G, Mossman K, Ask K, Doxey A, Hirota J
European Respiratory Journal 2020;56(3):2001123
European Respiratory Journal 2020;56(3):2001123
Syncytia formation by SARS‐CoV‐2‐infected cells
Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah M, Planchais C, Porrot F, Guivel‐Benhassine F, Van der Werf S, Casartelli N, Mouquet H, Bruel T, Schwartz O
The EMBO Journal 2020;39(23)
The EMBO Journal 2020;39(23)
SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in β Cells
Coate K, Cha J, Shrestha S, Wang W, Gonçalves L, Almaça J, Kapp M, Fasolino M, Morgan A, Dai C, Saunders D, Bottino R, Aramandla R, Jenkins R, Stein R, Kaestner K, Vahedi G, Brissova M, Powers A
Cell Metabolism 2020;32(6):1028-1040.e4
Cell Metabolism 2020;32(6):1028-1040.e4
No comments: Submit comment
Supportive validation
- Submitted by
- Atlas Antibodies (provider)
- Enhanced method
- Orthogonal validation
- Main image
- Experimental details
- Immunohistochemistry analysis in human prostate and cerebral cortex tissues using HPA035787 antibody. Corresponding TMPRSS2 RNA-seq data are presented for the same tissues.
- Sample type
- Human
- Protocol
- Protocol